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Presentation Outline - Part I  

 
Overview of Particle Beam Optics Utilized in the  

Matrix, Envelope, and Tracking Codes:  
TRACE 3-D, Beamline Simulator (TRANSPORT & TURTLE)  

 
 

1. Basic Matrix Premise, Coordinates, Linear / Nonl inear Particle Optics, …  pp 3-14 
     

2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Representations  pp 15-30 
 

⇒  Break 
      

3. Equations of Motion: Drifts, Quads, Bends - Indi vidual Particle Motion pp 31-54 
 

⇒  Break 
    

4. Introduction to the Beam Optics of TRACE 3-D pp 57-74 
   

5. Introduction to the Beam Optics of Beamline Simu lator pp 75-81 
     

6. Summary  page 82

  
 
 
 

 Part II ⇒ Use the PBO Lab TRACE 3-D Module to work some examp les  
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4. Introduction to TRACE 3-D 
 

 •  TRACE 3-D 
  -  Primarily a First-Order Code with a Space Char ge Model 
  -  Evolved from an Earlier Two-Dimensional Code ( TRACE)  
  -  Similar to an Early (LBNL) TRANSPORT Spin-Off  
  -  Includes several radiofrequency (RF) component s 
 

 •  Solves (Numerically “Integrates”) the Envelope Equa tions 
  -  Beam is an Ellipsoid in Three Dimensions - “Bu nched” 
  -  Differential Matrix Model of Optical Component s 
  -  Beam Envelopes Advanced in Steps, Using R-Matr ices 
   for Elements of Short Length, ∆s 
  -  Space Charge Impulse Applied at Each Step 
  -  Can Include Models for Fringe Fields, Higher-O rders, 
   Non-Linearities - But Only Computes Their Effect  on  
   the Second Moments of the Beam Distribution ( σ Matrix) 
 

 •  Principle Uses Are for Ion and (Low-Energy) Electro n Beams 
  -  Especially for Radiofrequency Acceleration, Sp ace Charge 
 

 •  PBO-Lab Version Can Also Model ElectroStatic (ES) E lements 
  -  Einzel Lenses, ES Quadrupoles, ES Columns, ES Deflectors  
  -  Useful with DC Acceleration, with or without S pace Charge 
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4. Introduction to TRACE 3-D (continued) 
 
 

 •  Initial Beam Usually Specified with 3-D Twiss (CS) Parameters  

  -  May Also Specify the Initial σ Matrix Directly 
 

  {  Recall:  If Particle Coordinates Transform as  [qi b] = Σj Rij  qja ≡ R[qi a] 
    It Can Be Shown that the Sigma Matrix [σij  b] Transforms as: 

 

 [σij  b] = Σk Rik Σm Rmj [σkm a] ≡ R[σij  a]R
T 

 

    where RT is the Transpose of R. } 
 

 •  6 × 6 σ Matrix Advanced, from Location j to j+1, through 
  an Increment, ∆s = sj+1 - s j, Along the Reference Trajectory: 
 

    σ(j+1) = R(∆s) σ(j) R(∆s)T  
 

 •  R(∆s) is the First-Order Transfer Matrix for Optical Ele ment 
  of Length ∆s 
 

 •  At Each Increment, a Space Charge Impulse is Applie d 
  Using a Thin Lens R Matrix Based Upon 3-D Ellipsoid 
 

 •  Since R(∆s) is Computed At Each Increment j, Non-Constant  
  (& Non-Linear) Fields Can be Modeled by Using R(j, ∆s) 
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4. Introduction to TRACE 3-D (continued) 
 
 

 •  Sixteen Built-in  Optical Elements in Standard Version 
  -  Six are Common (e.g. TRANSPORT) Elements: 
   Drift, Quad, Solenoid, Bend, Edge, Rotate 
  -  Three are “Compound” Magnet Elements: 
   Anti-Symmetric Doublet, Symmetric Triplet,  
   and Permanent Magnet Quad (PMQ) with Fringe Fiel ds 
  -  Four are Radiofrequency Elements: 
   RF Gap, RFQ Cell, RF Cavity, Coupled Cavity Tank  
  -  Thin Lens 
  -  Alias (Identical) - Takes on the Identity of a  Specified Element 
  -  Special = Free Electron Laser (FEL) Wiggler 
 
 

 •  PBO Lab TRACE 3-D Has Additional Optical Elements A vailable 
  -  2 Traveling Wave RF Accelerator Elements for E lectron Linacs 
  -  Electrostatic (ES) Elements    
   3 Einzel Lenses, 3 Prisms (Deflectors), 2 DC Col umns, 2 ES Quads 
  -  TRANSPORT / MAD S-Bend and R-Bend Supported 
 
 

 • PBO Lab TRACE 3-D Supports Overlapping Fields for E inzel Lenses 
   and DC Columns 
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4. Introduction to TRACE 3-D (continued)  
 
 

●  TRACE 3-D Uses an "Equivalent Uniform Beam" Model o f A Beam   
 

●  Emittance Values are for the Laboratory Emittance, 5 × RMS 
 
 
 
 
 
 
 
 
 TRACE 3-D Boundary Emittance RMS Emittance 
 Boundary "bnd" Emittance ≡ bnd Emittance = 5 × RMS Emittance 

 
 

(●  For Continuous (DC) Beams Can Assume Laboratory Emittance, 4 × RMS) 
 

●  Boundary, RMS, or Other Emittance ⇒ 1st Order Same, if no Space Charge     
 

●  Equivalent Uniform Beam Model, With Boundary Emitta nce: 
 ⇒   Useful for Computing Space Charge Effects  
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4. Introduction to TRACE 3-D (continued) 
 

Space Charge Model in TRACE 3-D  
 
 

 •  The Charge Density of a Uniformly Filled 3-D Ellips oid is 
 

 ρ(x,y,z) = ρo Θ [1 - (x/xm)2 - (y/ym) 2 - (z/zm) 2 ]  
 
  Where Θ is the Heaviside Step Function and 

  With Q Equal to the Total Charge in the Ellipsoid 
 

 •  The Three Semi-Axes of the Ellipsoid Are Computed f rom 
 

   xm = (σ11)
1/2  ym = (σ33)

1/2  zm = (σ55)
1/2 

 

 ⇒ Important to get σ55 correct, even for continuous (unbunched) beams  
 

 •  A Particle Will See an Electric Field Due to This C harge Density 
  - Inside the Ellipsoid, the Field is Linear in x, y, z 
  - The Coefficients of the Linear Field Depend Upo n xm, ym, zm 
  - TRACE 3-D Model Has No "Particles" Outside the Ellipsoid 

4π x  y  z 
3Qρ  =    
 m   m   m

o
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4. Introduction to TRACE 3-D (continued) 
 

Space Charge Model in TRACE 3-D  (con't) 
 
 

 •  Particles Experience an Electric Field Due to ρ(x,y,z) 
  Inside the Ellipsoid, this Field in the Beam Fram e is Given by: 
     

 
 •  f = f(p) is the Ellipsoidal Form Factor Which Depends Upon the 
  Semi-Axes of the Ellipsoid ( xm, ym, zm) Through the Ratio p: 
 

p = [zm/(xmym)1/2] 

(y  )
(x  +y  )

 m

 m      m
E   =       [                ] (1 - f) xx           

 ρ 

 ε 
 o

 o

E   =       [                ] (1 - f) yy

(x  )
(x  +y  )

 m

 m      m

 ρ 

 ε 
 o

 o

E   =       f zz

 ρ 

 ε 
 o

 o
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4. Introduction to TRACE 3-D (continued) 
  

Space Charge Model in TRACE 3-D  (con't) 
Ellipsoidal Form Factor  

 

 •  For  0 ≤ p ≤ ∞, the Ellipsoidal Form Factor is  0 ≤ f(p) ≤ 1 
 •  When p ≅ 1 (near spherical bunch) then  f(p) ≅ 1/(3p) 
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4. Introduction to TRACE 3-D (continued) 
 
 

Space Charge Model in TRACE 3-D  (con't) 
 

 

 •  For One Beam Bunch Passing a Point in the Beamline Every 
  RF Cycle, the Total Charge is Related to the Beam  Current I: 
 

      Q  =  I/f  =  (λ/c)I 
 

 •  For Relativistic Beams with Kinectic Energy W = (γ-1)mc2: 
 

     (Ex,y)lab frame = (Ex,y)beam frame / γ 
       (zm)lab frame = (zm)beam frame / γ 
 

 •  Effective R Matrix is Equivalent to a 3-D Diverging Thin Lens 
 

    R21 = -1/fx = qe (∂Ex/∂x) ∆s / (γ β2 mc2) 
 

    R43 = -1/fy = qe (∂Ey/∂y) ∆s / (γ β2 mc2) 
 

    R65 = -1/fz = qe (∂Ez/∂z) ∆s / (γ β2 mc2) 
 

 •  A Few Computational Details (Automated in TRACE 3-D ) 
  - Ellipsoid May Be Tilted ⇒ Must Transform Coordinates 

- Calculation Accuracy ⇒ Elements at ∆s/2, Some Adjust ∆s 
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4. Introduction to TRACE 3-D (continued) 
 

Continuous Beam Space Charge  
 
 

- It Can Be Shown That the TRACE 3-D Equivalent Unifo rm Beam Model for 3-D 
 Space Charge Can Approximate the KV (Equivalent Un iform Beam) 2-D  
 Space Charge Model By Making the Beam Bunch Suffic iently Long  
 

- Use a "Long" Bunch" in TRACE 3-D 
 Bunch Length rz Greater than the Beamline Length L 
 

- Pick the RF Wavelength λ Long Compared to the Beamline Length L 
 

- Set the TRACE 3-D Bunched Beam Current Ib To: 
    

 Ib = (4/3)(rz /βλ) Idc . 
    

 Where Idc Is the Continuous (DC) Beam Current  Suggestion:   Select rz 
   and λ so (4/3)(rz /βλ) =1 

- Bunch Length rz Remains Unchanged & Transverse Space Charge is KV 
 

- Results are Independent  of Precise Values of rz and λ - Provides Tests  
 

 ⇒ This Method is Largely Automated  in the PBO Lab TRACE 3-D Module  



KACST, Riyadh, Saudi Arabia Overview of Particle Beam Optics October 2014  

KACST October 2014 Overview of Particle Beam Optics - 66 G. H. Gillespie Associates, Inc. 

 
4. Introduction to TRACE 3-D (continued) 

 
 
 

TRACE 3-D Fitting ("Matching") Capabilities  
 
 

 

 •  “Matching” is TRACE 3-D Equivalent to TRANSPORT “Fi tting” 
 

 
 •  Fourteen (14) Matching Options in TRACE 3-D  
  -  Four (4) Find Twiss (C-S) Parameters for Match ed Beams 
  -  One Varies Initial Beam Parameters to Produce  
   Specified Twiss Parameters at the Output 
  -  Six (6) Vary (Match) Beamline Parameters 
   to Produce Specified Twiss Parameters at the Out put 
  -  Three (3) Vary Beamline Parameters to Produce  
   Specified R Matrix Elements (for Overall Beamline) 
   Specified σ Matrix (Modified) Elements (at Output) 
   Specified Phase Advances µx, µy, µz (at Output) 
 

 
 •  Number of Beamline Element Vary ("Match") Parameter s Limited to 6 

 
 (Number of Vary Parameters Can Be Increased with O ptimization Module) 
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4. Introduction to TRACE 3-D (continued) 
 
 
 

TRACE 3-D Fitting ("Matching") Capabilities  
 
 

Some Useful R-Matrix Fitting Constraints  
 

 

• For point-to-point optics in the horizontal (x) direction: R12 = 0 
 

• For parallel-to-parallel optics in the horizontal (x) direction: R21 = 0 
 

• For parallel-to-point optics in the horizontal (x) direction: R11 = 0 
 

• For point-to-parallel optics in the horizontal (x) direction: R22 = 0 
 

• Similar conditions for the vertical (y) direction involving Ryy submatrix 
 

• For achromatic optics in the horizontal (x) direction: R16 = R26 = 0 
 
 

Useful Beam (σ) Matrix Constraints  
 

 
• For a beam waist in the horizontal (x) direction:     αx = 0   or   r12 = 0 
 

• For beam size in the horizontal (x) direction:     [σ11] 
1/2 = Xsize   

 



KACST, Riyadh, Saudi Arabia Overview of Particle Beam Optics October 2014  

KACST October 2014 Overview of Particle Beam Optics - 68 G. H. Gillespie Associates, Inc. 

 
 

TRACE 3-D Capabilities  
 
 

Other Useful Commands 
 

 
 

• Trace of R-Matrix for stability in a periodic system: (1/2) |Tr[R]| ≤ 1 
 

⇒ PBO Lab TRACE 3-D Command "Calculate Phase Advance" Finds Matched Beam 
  Phase Space Parameters if a Matched Beam Exists (i.e. if  (1/2) |Tr[R]| ≤ 1) 
 
 

• Longitudinal phase space parameters of output beam:  
 

⇒ PBO Lab TRACE 3-D Command "Calculate Phase and Energy" Gives  
  Synchronous Phase, Beam Energy, Phase Spread, Bunch Length, Energy Spread,  
  Momentum Spread, Longitudinal Emittance, at the Output (Exit End of Beamline) 
 
 

• Transfer matrix for beamline:  
 

⇒ PBO Lab TRACE 3-D Command "Show R Matrix" Gives R-Matrix  
 
 

• Beam parameters at the output:  
 

⇒ PBO Lab TRACE 3-D Command "Show Modified Sigma" Gives Reduced σ-Matrix  
 
 
 

• PBO Lab has other useful capabilities that supplement these 
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4. Introduction to TRACE 3-D (continued)  
 
 

 

TRACE 3-D Mismatch Factor  
 
 

  
 •  Useful to Have One Number (Figure of Merit) to Comp are Two Ellipses 
 

 •  One Measure of Comparison is the Mismatch Factor ( MMF) 
  -  Two Ellipses ( a and b) with Different Twiss Parameters in x Plane 
  -  Mismatch Factor Between Ellipses a and b Defined as 
     MMFx = [(1/2)(Rx + [(Rx

2 - 4)]1/2 )]1/2 - 1 
     where  Rx = βa γb + γa βb - 2 αa αb 
 

  -  If Ellipses Are Identical ( a=b):  Rx = 2(βaγa-αa
2) = 2  & MMFx = 0 

  -  Different Ellipses MMFx > 0  
 
•  Most TRACE 3-D Fitting Minimizes Mismatch Factors MMFx, MMFy, MMFz 

 

•  Mismatch Factor ( MMF) defined by Twiss Parameters.   
 

•  This MMF Definition is Independent of the Beam Emittances.   
 

⇒ What is the geometrical / physical interpretation o f the MMF? 
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x 

x'  

x 

x'  

 
Mismatch Factor  -  Ellipse Parameterization  

 
 Twiss Representation Geometric Parameterization 
 
 

  x'm = [γx εx]
1/2 

  x'j = [εx /βx]
1/2 

 

x'e = -αx[εx /βx]
1/2 Ax 

 

 Bx 
 Θx 
 
 
 

  xm = [βx εx]
1/2 

 

  xj = [εx /γx]
1/2 

 

  xe = -αx[εx /γx]
1/2 

 
 

γx /εx = (cosΘx / Ax)
2 + (sinΘx / Bx)

2  
 

βx /εx = (sinΘx / Ax)
2 + (cosΘx / Bx)

2 
 

αx /εx = cosΘx sinΘx  [(1 / Bx)
2 - (1 / Ax)

2] 
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Mismatch Factor  - Ellipse Transformations  
 

Starting Ellipses 
 
 
 Ellipse (a) Ellipse (b) 
 
 
 
 
 
 

Rotate  Ellipses Through an Angle (e.g. Θa) To Make Ellipse  (a) Upright   
 
 
 Ellipse (c) Ellipse (d) 
 
 
 
 
 

x 

x ' x' 

x 

x 

x' 

x 

x' 
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Mismatch Factor  - Ellipse Transformations  
 

Scale Coordinates So That Upright Ellipse  (c) Becomes a Circle  
 

 
 Ellipse (e) Ellipse (f) 
 
 
 
 
 
 
 

Semi-Axes of Ellipse (e) are Equal (Circle): 
 

r = (Area/π)1/2 
 

Define for Ellipse (f): 
 

re = Larger of Semi-axes (a,b) 
 

Then Mismatch Factor Can Be Expressed As: 
 

MMF = (re / r) -1 ≥ 0 
 

x 

x' 

x 

x' 
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4. Introduction to TRACE 3-D (continued) 
 
 
 

Some Other TRACE 3-D Features  
  
 
 

•  TRACE 3-D Can Run Beam in Reverse (Backward) Direct ion 
  - PBO-Lab Put “Initial” Beam at End of Beamline, “Final” Beam at Start  
        ⇒  Use with Caution if Space Charge is Important!  
 
 

•  Supports Misalignment of Elements (computes beam ce ntroid) 
 
 

•  Can Couple Elements Parameters to Match Parameters  
  -  k=+1 Coupling:  Couple Parameter = Match Param eter  

-  k=-1 Coupling:  Couple Parameter = - Match Param eter,  
EXCEPT for Drift Lengths:  Sum of 2 Drifts = Constant   

 
 
 

•  PBO Lab version of TRACE 3-D 
  - Electrostatic (ES) Elements that can be used by  TRACE 3-D  
   - Can Import TRACE 3-D Input Files from other TR ACE 3-D versions* 
  - Can Write TRACE 3-D Input Files for other TRACE  3-D versions* 
   *Assuming versions have some degree of compatibilit y!  

 
•  Display Options Limited:  Profiles and Phase Space Plots  

  - Can Overlay ("Trace on Background") Profiles fo r Comparison  
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 Q 
50
   
51
 Q 
52
   

H A= 0.00       B=0.312E-01   
V A= 0.00       B=0.312E-01   

Z A= 0.00       B=0.432E+06   

BEAM AT NEL1=   1
H A=-.492       B=0.986E-01   
V A=-194.       B=0.301       

Z A=0.535E-02   B=0.432E+06   

BEAM AT NEL2=  52 I=     0.0 mA
W=   0.0100    0.0100 MeV

FREQ=   3.00 MHz   WL=100000.00 mm
EMITI=   0.000    0.000    43.24
EMITO=   0.003    0.000    43.24

 N1=   1   N2=  52

MATCHING TYPE = 11
DESIRED MODIFIED BEAM MATRIX
  S11 = 1.0000000E-06 
  S33 = 1.0000000E-06 

MATCH VARIABLES (NC=2)
MPP MPE       VALUE
  1   49     8.73879
  1   51   -14.23423

P B O Lab T R A C E 
DATE: 09-14-2008
TIME: 21:50:47

 

4. Introduction to TRACE 3-D (continued) 
 
 

Primary Graphical Output:  "Graph Beam Line"  
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5. Introduction to Beamline Simulator  
 
 

 •  Developed by Morgan & Kurt Dehnel (D-PACE) 
     

 •  Standalone Program - Not a PBO Lab Module 
     

 •  Six Magnetic  Optical Elements 
  -  Five are Common (e.g. TRANSPORT) Elements: 
   Drift, Quad, Solenoid, Bend (S-Bend, normal entr y), Rotate 
  -  Thin Lens 
   

 •  Can Also Enter a "Non-Standard" Element via R-matri x Element 
   

•  Supports Misalignment of Elements via "Perturbation " Element 
 

 •  Can Compute Beam Envelopes Through Beamline 
 

 •  Can Track Individual Particles ("rays") Through Bea mline: 1 to 10,000 
  ⇒ "Performance Code" Rather Than a "Design Code"   
 

 •  Single Parameter Fitting  
   

 •  Provides a Unique Simulated Real-time Tuning  Capability  
     

 •  Good Suite of Graphics & Plot Tools 
     

 •  Good and Very Detailed Manual:  "Using Beamline Sim ulator" 



KACST, Riyadh, Saudi Arabia Overview of Particle Beam Optics October 2014  

KACST October 2014 Overview of Particle Beam Optics - 76 G. H. Gillespie Associates, Inc. 

 

 
5. Introduction to Beamline Simulator (continued) 

   
   

 • Uses a   5 × 5  R-Matrix rather than 6  × 6 R-Matrix  
 

  -  Recall that for Magnetic  Optics the Momentum (& Energy) Conserved 
 

       ⇒ dδ /ds = 0   
 

  -  So R66 ≡ 1 and R6i ≡ 0 for all i < 6.  In addition  Ri5 ≡ 0 for all i < 5 
 

    Ignore the path-length (bunch length) variable l then 

    ⇒ No need for full 6  × 6 R-Matrix (magnetic systems) 
 
 

  -  5-D coordinates same as 5 of the "Standard" 6- D coordinates: 
 

     Beamline Simulator:    (qi)=(x,x',y,y', δ) 
     TRACE 3-D, TRANSPORT: (qi)=(x,x',y,y', l,δ) 
   

 • Several "pure magnetic" codes use this "simplified"  5 × 5  R-Matrix  
     

 • Cannot readily model acceleration / deceleration: 
   

  -  No ElectroStatic (ES) Elements 
  -  No RadioFrequency (RF) Elements 
  -  Does not model bunched beams 
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5. Introduction to Beamline Simulator (continued) 
   
   

 • Beam uses a   5 × 5  σ-Matrix rather than 6  × 6 σ-Matrix  
   
   
   

 • Initial Beam Input is "almost" Standard: 
   

  -  Semi-Axis Parameters  
   

  -  σ Matrix Directly 
   
   
   

 • Semi-Axis Beam Parameters are a Little "Non-Standar d" 
   

  -  Beam Size and Beam Divergence are Standard  
   

  -  Reduced σ Matrix (i.e. Correlation Parameters rij) Not Used  
   

  ⇒ Possible to Input Off-Diagonal σij Such That  rij > 1. 
   
   
   

 • No Direct Twiss Parameter Representation, But Other  Capability: 
   

  -  Initial Phase-Space Can Defined by "Virtual" D rifts & Thin-Lenses  
   

  -  The "Geometry Representation" Angle Θ is Calculated & Displayed  

   Use these "Angles" with Caution  
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x'  

x 

x'  

  
   
   

5. Introduction to Beamline Simulator (continued) 
   
   

 Twiss Representation Geometric Parameterization 
 
 

  x'm = [γx εx]
1/2 

  x'j = [εx /βx]
1/2 

 

x'e = -αx[εx /βx]
1/2 Ax 

 

 Bx 
 Θx 
 
 
 

  xm = [βx εx]
1/2 

 

  xj = [εx /γx]
1/2 

 

  xe = -αx[εx /γx]
1/2 

 
 

γx /εx = (cosΘx / Ax)
2 + (sinΘx / Bx)

2  
 

βx /εx = (sinΘx / Ax)
2 + (cosΘx / Bx)

2 
 

αx /εx = cosΘx sinΘx  [(1 / Bx)
2 - (1 / Ax)

2] 
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5. Introduction to Beamline Simulator (continued) 

   
   

After a Little Algebra it Can Be Shown for the Geom etric Representation that:  
   

tan(2Θx) = 2 αx / (βx- γx)   (but units!?!) 
   
   
   

Let's Try an Example:  
   

xm = 1.00 mm,  x'm = 10.0 mrad = 0.010 rad  
   

σ11 = 1.00 mm2  σ22 = 0.0001 rad2 σ12 = 0.005 mm-rad 
   

εx = 8.660254 π-mm-mrad, r12 = 0.5 
   

αx = - r12/(1- r12
2)1/2 = - 0.577350 radians 

   

βx = 0.115470 mm/mrad      γx = (1- αx
2) / βx= 5.773508  mrad/mm 

   

Or in Different Units:  
   

βx = 115.470 mm/rad      γx = 0.005773508  rad/mm 
   

*  Results in Blue on this page are from PBO Lab for this example. 
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5. Introduction to Beamline Simulator (continued) 
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 5. Introduction to Beamline Simulator (continued) 
   
   
     

Units Choice 1 (PBO Lab Defaults for Twiss Paramete rs):    
   

βx = 0.115470 mm/mrad      γx = (1- αx
2) / βx= 5.773508  mrad/mm 

   

tan(2Θx) = 2 αx / (βx- γx) = 1.1547 / 5.658038 = 0.204081 (units!?!) 
   

 (2Θx) = 11.535° or Θx = 5.7675°
 

     

Units Choice 2 (Beamline Simulator):    
   

βx = 115.470 mm/rad      γx = 0.005773508  rad/mm 
   

tan(2Θx) = 2 αx / (βx- γx) = 1.1547 / 115.464 = 0.0100005   (units!?!) 
   

 (2Θx) = 0.57297° or Θx = 0.28648° 
 

Beamline Simulator gives for this example Θxx' = - 0.286497996...°  
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6. Summary of Part I 
 
 

•  Overview of Coordinate Systems and Basic Matrix Des criptions 
 
•  Relationship Between Semi-Axes and Twiss Beam Descr iption 
 
•  Overview of Drift, Quad, and Bend Equations of Moti on & Matrix Solutions 
 
•  Guide to Fitting Constraints (Point-to-Point, etc.)  
 
•  Summary of Primary TRACE 3-D Capabilities 
 
•  Brief Introduction to Beamline Simulator 
 
 
 

 Part II ⇒ Use the PBO Lab TRACE 3-D Module to work some examp les  
  


